Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Tackling xEV Battery Chemistry in View of Raw Material Supply Shortfalls

 
: Karabelli, Duygu; Kiemel, Steffen; Singh, Soumya; Koller, Jan; Ehrenberger, Simone; Miehe, Robert; Weeber, Max; Birke, Kai Peter

:
Fulltext ()

Frontiers in energy research 8 (2020), Art. 594857, 13 pp.
ISSN: 2296-598X
English
Journal Article, Electronic Publication
Fraunhofer IPA ()
Chemie; End-of-Life Processing; Lithium-Ionen-Batterie; recycling; Wirtschaftlichkeit

Abstract
The growing number of Electric Vehicles poses a serious challenge at the end-of-life for battery manufacturers and recyclers. Manufacturers need access to strategic or critical materials for the production of a battery system. Recycling of end-of-life electric vehicle batteries may ensure a constant supply of critical materials, thereby closing the material cycle in the context of a circular economy. However, the resource-use per cell and thus its chemistry is constantly changing, due to supply disruption or sharply rising costs of certain raw materials along with higher performance expectations from electric vehicle-batteries. It is vital to further explore the nickel-rich cathodes, as they promise to overcome the resource and cost problems. With this study, we aim to analyze the expected development of dominant cell chemistries of Lithium-Ion Batteries until 2030, followed by an analysis of the raw materials availability. This is accomplished with the help of research studies and additional experts’ survey which defines the scenarios to estimate the battery chemistry evolution and the effect it has on a circular economy. In our results, we will discuss the annual demand for global e-mobility by 2030 and the impact of Nickel-Manganese-Cobalt based cathode chemistries on a sustainable economy. Estimations beyond 2030 are subject to high uncertainty due to the potential market penetration of innovative technologies that are currently under research (e.g. solid-state Lithium-Ion and/or sodium-based batteries).

: http://publica.fraunhofer.de/documents/N-622117.html