Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Tiny GAs for image processing applications

: Köppen, M.; Franke, K.; Vicente-Garcia, R.


IEEE computational intelligence magazine 1 (2006), No.2, pp.17-26
ISSN: 1556-603X
Journal Article
Fraunhofer IPK ()

The expedience of today's image-processing applications is no longer based on the performance of a single algorithm alone. These systems appear to be complex frameworks with a lot of sub-tasks that are solved by specific algorithms, adaptation procedures, data handling, scheduling, and parameter choices. The venture of using computational intelligence (CI) in such a context, thus, is not a matter of a single approach. Among the great choice of techniques to inject CI in an image-processing framework, the primary focus of this presentation will be on the usage of so-called Tiny-GAs. This stands for an evolutionary procedure with low efforts, i.e. small population size (like 10 individuals), little number of generations, and a simple fitness. Obviously, this is not suitable for solving highly complete: optimization tasks, but the primary interest here is not the best individual's fitness, but the fortune of the algorithm and its population, which has just escaped the Monte-Carlo domain after random initialization. That this approach can work in practice will be demonstrated by means of selected image-processing applications, especially in the context of linear regression and line fitting; evolutionary post processing of various clustering results, in order to select a most suitable one by similarity; and classification by the fitness values obtained after a few generations.