Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Doping Variation at the TCO/a-Si(p) Hole Contact

 
: Luderer, C.; Tutsch, L.; Messmer, C.; Hermle, M.; Bivour, M.

:
Fulltext urn:nbn:de:0011-n-6061875 (545 KByte PDF)
MD5 Fingerprint: bc8f38c84bcbfc9e9e3f837d332302f6
Created on: 12.11.2020


Pearsall, Nicola (ed.):
37th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC 2020 : 07-11 September 2020, Online Conference
München: WIP, 2020
ISBN: 3-936338-73-6
pp.493-496
European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC) <37, 2020, Online>
English
Conference Paper, Electronic Publication
Fraunhofer ISE ()
Photovoltaik; Silicium-Photovoltaik

Abstract
Resistive losses arise at the transport barriers at the interfaces between the different semiconductor materials in the TCO/a-Si/c-Si stack and limit the power output of silicon heterojunction (SHJ) solar cells. A key element is the unisotype recombination junction at the TCO/a-Si(p) interface. We identify sufficient doping on both sides of this junction to be crucial for low contact resistance ( c). For a-Si this is achieved by using a sufficient but not too high doping gas concentration during deposition. On the TCO side high oxygen (O2) gas concentrations during deposition have to be avoided. To combine high transparency of O2-rich TCOs with low c and Rsheet of O2-poor TCOs, we utilize a TCO layer stack. We show that a low O2 content in the vicinity of the TCO/a-Si(p) interface is mandatory to provide efficient tunnelling transport and to avoid resistive losses at the TCO/a-Si(p) interface.

: http://publica.fraunhofer.de/documents/N-606187.html