Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Comparison of Different Lactobacilli Regarding Substrate Utilization and their Tolerance Towards Lignocellulose Degradation Products

 
: Gubelt, A.; Blaschke, L.; Hahn, T.; Rupp, S.; Hirth, T.; Zibek, S.

:
Fulltext ()

Current microbiology 77 (2020), No.10, pp.3136-3146
ISSN: 0343-8651
English
Journal Article, Electronic Publication
Fraunhofer IGB ()

Abstract
Fermentative lactic acid production is currently impeded by low pH tolerance of the production organisms, the successive substrate consumption of the strains and/or the requirement to apply purified substrate streams. We identified Lactobacillus brevis IGB 1.29 in compost, which is capable of producing lactic acid at low pH values from lignocellulose hydrolysates, simultaneously consuming glucose and xylose. In this study, we compared Lactobacillus brevis IGB 1.29 with the reference strains Lactobacillus brevis ATCC 367, Lactobacillus plantarum NCIMB 8826 and Lactococcus lactis JCM 7638 with regard to the consumption of C5- and C6-sugars. Simultaneous conversion of C5- and C6-monosaccharides was confirmed for L. brevis IGB 1.29 with consumption rates of 1.6 g/(L h) for glucose and 1.0 g/(L h) for xylose. Consumption rates were lower for L. brevis ATCC 367 with 0.6 g/(L h) for glucose and 0.2 g/(L h) for xylose. Further trials were carried out to determine the sensitivity towards common toxic degradation products in lignocellulose hydrolysates: acetate, hydroxymethylfurfural, furfural, formate, levulinic acid and phenolic compounds from hemicellulose fraction. L. lactis was the least tolerant strain towards the inhibitors, whereas L. brevis IGB 1.29 showed the highest tolerance. L. brevis IGB 1.29 exhibited only 10% growth reduction at concentrations of 26.0 g/L acetate, 1.2 g/L furfural, 5.0 g/L formate, 6.6 g/L hydroxymethylfurfural, 9.2 g/L levulinic acid or 2.2 g/L phenolic compounds. This study describes a new strain L. brevis IGB 1.29, that enables efficient lactic acid production with a lignocellulose-derived C5- and C6-sugar fraction.

: http://publica.fraunhofer.de/documents/N-602629.html