Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Engineering of Surfaces by the Use of Detonation Nanodiamonds. Towards Drug-eluting Coatings of Biomaterials

Technische Entwicklung von Oberflächen mittels Detonationsnanodiamanten. Auf dem Weg zu medikamentenfreisetzenden Beschichtungen von Biomaterialien
 
: Balakin, Sascha
: Cuniberti, Gianaurelio; Wiesmann, Hans-Peter; Yeo, Jong-Souk

:
Fulltext ()

Dresden, 2020, VIII, 106 pp.
Dresden, TU, Diss., 2020
URN: urn:nbn:de:bsz:14-qucosa2-715563
English
Dissertation, Electronic Publication
Fraunhofer IKTS ()
Detonationsnanodiamant; Biokompatibilität; Beschichtung; Zell-Material-Wechselwirkung; Oberflächenmodifikation; detonation nanodiamonds; biocompatibility; coatings; cell-material interaction; surface modification

Abstract
Das Hauptziel der Arbeit bestand in der Herstellung sowie der Charakterisierung von Beschichtungen aus Detonationsnanodiamanten (ND), welche eine hohe Biokompatibilität und eine hohe Wirkstoffbeladbarkeit aufweisen sollten. Dieses Ziel wurde durch die Integration funktionalisierter ND in herkömmliche Beschichtungssysteme erreicht. Die biologische Beurteilung von den ND-verstärkten Beschichtungen wurde durch Untersuchungen der Zellproliferation und der Zelldifferenzierung untermauert. Im ersten Schritt wurde ein Peptid mit knochenbildenden Eigenschaften kovalent an oxidierte ND angebunden. Mittels einer optimierten Wärmebehandlung wurden Carbonsäurederivate auf der ND-Oberfläche erzeugt. Anschließend wurde das Peptid unter Verwendung eines Carbodiimid-Vernetzungsmittels an die oxidierte ND-Oberfläche angebunden. Während des Konjugationsprozesses erleichterte die facettenreiche ND-aufbereitung und -disaggregation die Pulverhandhabung. Außerdem wurden Antibiotika auf den ND adsorbiert, um antimikrobielle Eigenschaften zu erzeugen. Die entsprechende Oberflächenbeladung der ND wurde unter Verwendung verschiedener absorptionsspektroskopischer Ansätze wie Fluoreszenz- und UV/Vis-Spektroskopie bestimmt. Biofunktionale und unbehandelte ND wurden über Flüssigphasenabscheidung auf verschiedene Biomaterialien aufgebracht. Hierbei wurden unter anderem Polyelektrolyt-Mehrschichtsysteme aufgrund ihrer Selbstorganisation und universellen Anwendbarkeit auf zahlreiche Substrate eingesetzt. Um die Zellantwort auf die mehrschichtigen ND zu bewerten, wurden humane Osteoblasten (hFOB) kultiviert. Die hFOB zeigten eine hohe Zellproliferation, eine hohe Zelldichte und eine hohe Zelladhäsion, was die hohe Biokompatibilität von mehrschichtigen ND belegt. Die vorliegende Arbeit stellt eine neuartige und zuverlässige Strategie für eine allgemein anerkannte Verbundbeschichtung dar. Das Potenzial von ND als biokompatible Medikamententräger und als Beschichtungsmaterial für Biomaterialien konnte aufgezeigt werden. Die dargestellte Technologie kann für die Entwicklung und Optimierung von Medikamententrägern der nächsten Generation, z. B. in arzneimittelfreisetzenden Beschichtungen, sowie für Biomaterialien im Allgemeinen verwendet werden.

 

The main objective of this work was to manufacture and to characterize detonation nanodiamond (ND) coatings with high biocompatibility and high drug loading capability. This was achieved via the integration of functionalized NDs into standard coating systems. The examination of cell proliferation and cell differentiation supported the biological assessment of the ND-enhanced coatings. As a first step, an osteogenic peptide was covalently grafted onto oxidized NDs. Accordingly, carboxylic acid derivatives were generated on the as-received ND surface via an optimized heat treatment. The osteogenic peptide was tethered to the oxidized ND surface using a carbodiimide crosslinking method. The multifaceted ND preparation and disaggregation facilitated the powder handling during the conjugation process. Moreover, antibiotics were physisorbed onto as-received NDs to add antimicrobial properties. The correlated surface loading of NDs was determined using various absorption spectroscopy methods such as fluorescence and ultraviolet-visible spectroscopy. Peptide-conjugated NDs and NDs with untreated surface chemistry have been immobilized on different biomaterials using liquid phase deposition techniques. Herein, polyelectrolyte multilayers (PEMs) were utilized, among others, due to their self-organization and universal applicability for numerous substrates. In order to assess the cell-material interactions, human fetal osteoblasts (hFOBs) were cultured. The hFOBs exhibited a high cell proliferation, high cell density, and sound cellular adhesion, which proves the high biocompatibility of PEMs containing NDs. The present study represents a novel and reliable strategy towards a public approved composite coating. The potential of NDs as a biocompatible delivery platform and as a coating material for biomaterials has been demonstrated. This technology will be useful for the development and optimization of next-generation drug delivery vehicles, e.g. drug-eluting coatings, as well as for biomaterials in general.

: http://publica.fraunhofer.de/documents/N-597116.html