Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Analysis of Control Flow Graphs Using Graph Convolutional Neural Networks

: Philipp, Patrick; Morales Georgi, Rafael X.; Robert, Sebastian; Beyerer, Jürgen


Institute of Electrical and Electronics Engineers -IEEE-; IEEE Systems, Man, and Cybernetics Society:
6th International Conference on Soft Computing & Machine Intelligence, ISCMI 2019 : November 19-20, 2019, Johannesburg, South Africa
Piscataway, NJ: IEEE, 2019
ISBN: 978-1-7281-4577-8
ISBN: 978-1-7281-4576-1
ISBN: 978-1-7281-4578-5
International Conference on Soft Computing & Machine Intelligence (ISCMI) <6, 2019, Johannesburg>
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Artificial Intelligence for the Review of Workflows
Conference Paper
Fraunhofer IOSB ()

With the digital transformation of companies, ever larger amounts of data are generated and available for analysis. Process mining techniques can be used to extract and analyze process models from these data. Related techniques have quickly developed into an important field with constantly increasing investments in recent years. Thus, the automated analysis of processes has gained an important role in many companies. In this context, graphs have been shown to be an intuitive representation of how the gathered processes are carried out using the aforementioned techniques. For the analysis of these so-called control flow graphs, we investigate the use of convolution neural networks, which are specially designed for graphs: graph convolution networks (GCNs). In our contribution, GCNs are used to perform a regression task based on individual control flows of a process in which farmers apply for specific governmental payments. The approach achieved promising results on this publicly available data set.