Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

On Modeling and Simulation of Industrial Fiber Spinning Processes: Diffusive Effects, Electrified Jets and Turbulent Airflows

Modellierung und Simulation industrieller Fadenspinnprozesse. Diffusive Effekte, elektrifizierte Jets und turbulente Luftströmungen
: Wieland, Manuel
: Marheineke, N.; Klar, A.; Meister, A.; Schulz, V.

Fulltext urn:nbn:de:0011-n-5821279 (1.4 MByte PDF)
MD5 Fingerprint: b57c9f554f0d5f7fa940e84fef7a3286
Created on: 19.3.2020

Stuttgart: Fraunhofer Verlag, 2020, IX, 197 pp.
Zugl.: Trier, Univ., Diss., 2019
ISBN: 978-3-8396-1573-7
Dissertation, Electronic Publication
Fraunhofer ITWM ()
mathematical physics; differential calculus & equation; industrial chemistry & chemical engineering; mathematical modelling; textile and fibre technology; nonlinear science; Mathematiker; Verfahrenstechniker; Verfahrensingenieur; Chemieingenieur; Entwicklungsingenieur

In the technical textile industry models and simulations of underlying manufacturing processes increasingly gain attention in order to optimize existing spinning devices. Since the underlying three-dimensional multiscale-multiphase problems require unfeasible computation times, direct numerical simulations of the fiber dynamics are not practical. Thus, the special Cosserat theory with one-dimensional descriptions of the fibers builds our model basis. In this work we suitably extended this model basis to describe all physically relevant effects present in industrial setups and develop problem tailored numerical solution strategies. To show the capability and efficiency of our model-simulation framework we investigate three industrial spinning processes: dry spinning, electrospinning, and melt-blowing. For the first time in literature we present simulation results of multiple dry spun fibers in a two-way interaction with an outer airflow, a detailed investigation of the fiber's whipping movement present in electrospinning utilizing a rotating reference frame as well as simulation results of melt-blown fibers including turbulent airflow effects leading to realistically thin fibers.