Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Protected silver coatings for reflectors

: Schwinde, S.; Schürmann, M.; Schlegel, R.; Kinast, J.; Dorn, R.J.; Lizon, J.L.; Tordo, S.; Kaiser, N.


Sodnik, Z. ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
International Conference on Space Optics, ICSO 2018 : Chania, Greece, 9-12 October 2018
Bellingham, WA: SPIE, 2019 (Proceedings of SPIE 11180)
ISBN: 978-1-5106-3077-2
Paper 111804M, 10 pp.
International Conference on Space Optics (ICSO) <12, 2018, Chania>
Conference Paper
Fraunhofer IOF ()

For ground- and spaced based applications, Ag coated reflectors are indispensable because of their high reflectivity. The transport, assembling and storage of these reflectors takes a long time, before they are finally commissioned for the actual applications. To endure this period without a decrease of reflectivity, protective coatings with a final layer, which offers a high resistance to aqueous solutions and a low mechanical stress should be used. These criteria were taken into account for the selection of a final layer for a protected Ag-coating, which was applied for reflectors utilized in the CRIRES+- instrument (an IR spectrograph used at the VLT). Reactively sputtered Al2O3, SiO2 and Si3N4 layers were investigated with regard to these criteria. In aqueous (basic) solutions, the investigated Si3N4 layers are more stable than the SiO2 layers, and the SiO2 layers are more stable than the Al2O3 layers. This shows the influence of the intrinsic material properties. The mechanical stress of the sputtered layers depends on the deposition conditions and thus on the selected parameters. A Si3N4 layer with a high resistance to aqueous solutions also offers a low and stable mechanical stress. Therefore, the deposition-parameters which have been used for this layer were applied for sputtering the final layer of the protected Ag-coating for the reflectors.