Options
2019
Conference Paper
Title
Efficient 3D object tracking approach based on convolutional neural network and Monte Carlo algorithms used for a pick and place robot
Abstract
Currently, Deep Learning (DL) shows us powerful capabilities for image processing. But it cannot output the exact photometric process parameters and shows non-interpretable results. Considering such limitations, this paper presents a robot vision system based on Convolutional Neural Networks (CNN) and Monte Carlo algorithms. As an example to discuss about how to apply DL in industry. In the approach, CNN is used for preprocessing and offline tasks. Then the 6-DoF object position are estimated using a particle filter approach. Experiments will show that our approach is efficient and accurate. In future it could show potential solutions for human-machine collaboration systems.