Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Demonstrated pre-compensation of a focused laser beam with up to 0.27 mrad point-ahead-angle over a 1-km horizontal communication path

 
: Brady, A.; Leonhard, N.; Rößler, C.; Gier, M.; Böttner, P.; Reinlein, C.

:
Fulltext ()

Sodnik, Z. ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
International Conference on Space Optics, ICSO 2018 : Chania, Greece, 9-12 October 2018
Bellingham, WA: SPIE, 2019 (Proceedings of SPIE 11180)
ISBN: 978-1-5106-3077-2
Paper 111801E, 9 pp.
International Conference on Space Optics (ICSO) <12, 2018, Chania>
English
Conference Paper, Electronic Publication
Fraunhofer IOF ()

Abstract
In the development of laser communication networks, atmospheric turbulence remains an obstacle in the efficiency optimisation of bidirectional optical links. Post-compensation of the downlink signal through adaptive optics (AO) has been verified as a method of increasing the efficiency of satellite-to-ground optical links, however, similar efficiencies have yet to be achieved in the opposite direction (uplink) largely due to the shower curtain effect and the consequent impossibility of conducting post-compensation over the smaller receiver aperture at the satellite terminal. Pre-compensation is anticipated to be a promising method of increasing the efficiency in uplink communications for Earth-to-GEO optical feederlinks, by pre-distorting the uplink wavefront prior to propagation through the atmosphere using measurements of the downlink. Here, we present the recent modifications to our current experimental setup and initial results of a pre-compensation experiment conducted over a 1 km horizontal path. The experiment aimed to investigate pre-compensation under a point-ahead-angle for the special case of a focussed uplink beam. Two optical terminals were developed, a "ground terminal breadboard" (GTB) consisting of a commercially available 30 cm reflective telescope in combination with an AO-box [3] capable of simultaneous post-and pre-compensation and a "satellite terminal breadboard" (STB) with separate transmission and receiving apertures for measurement of the uplink beam under a point-ahead-angle (PAA). We present a first look at and discussion of the experimental results which show that AO pre-compensation increased the measured intensity of the uplink beam over the receiving aperture of the STB for a PAA of up to 0.27 mrad.

: http://publica.fraunhofer.de/documents/N-574781.html