Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Wide range UV irradiation system for imaging reflection spectroscopy

: Illmann, R.; Rosenberger, M.; Notni, G.


Dhar, N.K. ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
Image Sensing Technologies: Materials, Devices, Systems, and Applications V : 16-19 April 2018, Orlando, Florida, United States
Bellingham, WA: SPIE, 2018 (Proceedings of SPIE 10656)
ISBN: 978-1-5106-1824-4
ISBN: 978-1-5106-1823-7
Paper 106561T, 9 pp.
Conference "Image Sensing Technologies - Materials, Devices, Systems, and Applications" <5, 2018, Orlando/Fla.>
Conference Paper
Fraunhofer IOF ()

Reflection spectroscopy is a promising measuring principle to get measurement data of surface signatures from objects and materials. A large field of applications, in inline or outline testing tasks, can be handled with it. The investigation deals with investigations regarding development of a broadband UV radiation source and the integration in a hyperspectral push broom imaging system using standard spectral radiation sources. Comprehensive market research has shown that there is no disposability of a UV radiation source, which emits a nearly continuous radiation in the spectral range of 220 up to 400 nanometers. Therefore, a second idea is to combine various gas discharging lamps to receive a nearly continuous spectrum in that area of the UV radiation. A very important and interesting circumstance of using standard spectral lamps as a radiation source for push-broom-imaging is the fact, that the active zone of the plasma discharge has a line-like contour, which can assumed as an axially expanding point light source. Therefore, it is only necessary to project this for getting the needed radiation field in the framework of reflection spectroscopy. The aim is to determine which different gases of a standard range of spectral light sources are suitable. Another approach is the investigation of the effect that modifiable parameters - such as pressure or a time modulated energy source - might have to the spectral behavior of the differing radiation sources and the reflected light from the test object as well. Physical models of high intensity discharging light sources are well proved, but the concept of light addition, to get a special required spectral distribution, may cause some specific problems that must be solved. It is also a goal to evaluate, in which conditions classic models work and how far the can be used.