Options
2020
Journal Article
Title
Fabrication of functional superhydrophobic surfaces on carbon fibre reinforced plastics by IR and UV direct laser interference patterning
Abstract
The fabrication of functional microstructures on surfaces by laser enables unique material properties and is presently a leading research topic. This work addresses the production of functional hierarchical microstructures on carbon fibre reinforced polymer composites in order to control the wettability properties of the material. Two-beam Direct Laser Interference Patterning using either ultraviolet (263 nm) or infrared (1053 nm) nanosecond laser source is employed to produce melt-free and well-defined hierarchical microstructures on carbon fibre reinforced plastics. The resulting water contact angles after thin film deposition of 1H,1H,2H,2H-Perflorodecyl-triethoxysilane were analysed with respect to structure depth and quality. The maximum static contact angle of 171° is demonstrated for dual hierarchical microstructures composed of 11 µm deep large-scale pillars, covered by 1.7 µm pillars, both fabricated in a single step.
Author(s)