• English
  • Deutsch
  • Log In
    Password Login
    Have you forgotten your password?
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Application of Nonlinear Feature Normalization on Combined Hyperspectral and Lidar Data
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Application of Nonlinear Feature Normalization on Combined Hyperspectral and Lidar Data

Abstract
Mitigating nonlinear effects, e.g., due to shadows, variations in illumination conditions, and angular dependencies of spectral signatures is an important topic in hyperspectral remote sensing. In this paper, we apply the Nonlinear Feature Normalization on a combined data set consisting of 128 spectral bands and a weighted digital elevation model. The NFN transforms the data set to a new linear basis and by that mitigates nonlinearities. Evaluation is done by applying the Spectral Angle Mapper to the original and the NFN-transformed data. Different parameter combinations are tested to find the best classification results. Additionally, a Random Forest approach is calculated to compare the results.
Author(s)
Gross, Wolfgang
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Bulatov, Dimitri  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Solbrig, Peter
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
IGARSS 2019, IEEE International Geoscience and Remote Sensing Symposium. Proceedings  
Conference
International Geoscience and Remote Sensing Symposium (IGARSS) 2019  
DOI
10.1109/IGARSS.2019.8898979
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • feature normalization

  • mitigating nonlinear effects

  • Land Cover Classification

  • training data

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024