Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

A Nonlinear Broadband Electromagnetic Vibration Energy Harvester Based on Double-Clamped Beam

: Lu, Z.; Wen, Q.; He, X.; Wen, Z.

Fulltext ()

Energies 12 (2019), No.14, Art.2710, 12 pp.
ISSN: 1996-1073
Journal Article, Electronic Publication
Fraunhofer ENAS ()

The performance of vibration energy harvesters is usually restricted by their frequency bandwidth. The double-clamped beam with strong natural nonlinearity is a simple way that can effectively expand the frequency bandwidth of the vibration energy harvester. In this article, a nonlinear electromagnetic vibration energy harvester with monostable double-clamped beam was proposed. A systematic analysis was conducted and a distributed parameter analytical model was established. On this basis, the output performance was estimated by the analytical model. It was found that the nonlinearity of the double-clamped beam had little influence on the maximum output, while broadening the frequency bandwidth. In addition, the resonant frequency, the frequency bandwidth, and the maximum output all increased following the increase of excitation level. Furthermore, the resonant frequency varies with the load changes, due to the electromagnetic damping, so the maximum output power should be gained at its optimum load and frequency. To experimentally verify the established analytical model, an electromagnetic vibration energy harvester demonstrator was built. The prediction by the analytical model was confirmed by the experiment. As a result, the open-circuit voltage, the average power and the frequency bandwidth of the electromagnetic vibration energy harvester can reach up to 3.6 V, 1.78 mW, and 11 Hz, respectively, under only 1 G acceleration, which shows a prospect for the application of the electromagnetic vibration energy harvester based on a double-clamped beam.