• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Evaluation of mold materials for precision glass molding
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Evaluation of mold materials for precision glass molding

Abstract
Driven by the wide range of applications in the fields of laser technology, biomedicine and consumer electronics, etc., the demand for high-quality lenses with complex geometries and small dimensions is rapidly rising. Since grinding and polishing of such lenses is neither practically nor economically viable, Precision Glass Molding (PGM) has become a popular production method. PGM is a replicative technology for producing high-precision optical lenses in medium or high volumes. During the one-cycle molding process, a glass preform is heated until the viscous state and afterwards pressed into the desired shape using two high-precise molding tools. This process permits the direct and efficient manufacture of high shape accuracy and surface quality optics without any mechanic post-processing step. The efficiency of PGM processes depend primarily on the lifetime of the high-precision molding tools. Therefore, various investigations focus on enhancing the molding tool lifetime. This work focuses on the evaluation of suitable mold materials for PGM, whereby different substrate materials as well as protective coatings are considered. At this, three different kinds of glass with varying molding temperature were investigated: common optical glass, infrared transmissive chalcogenide glass, and fused silica. The molding temperature of common optical glass ranges from 400°C to 700°C, whereas chalcogenide glass is molded at around 250°C. Fused silica requires a more challenging molding temperature of about 1400°C. Due to the varying molding temperatures, different mold materials can be evaluated for each of the investigated glasses.
Author(s)
Friedrichs, Marcel  
Fraunhofer-Institut für Produktionstechnologie IPT  
Grunwald, Tim  
Fraunhofer-Institut für Produktionstechnologie IPT  
Bergs, Thomas  
Fraunhofer-Institut für Produktionstechnologie IPT  
Mainwork
Sixth European Seminar on Precision Optics Manufacturing 2019  
Conference
European Seminar on Precision Optics Manufacturing (POM) 2019  
DOI
10.1117/12.2526769
Language
English
Fraunhofer-Institut für Produktionstechnologie IPT  
Keyword(s)
  • glasses

  • precision glass molding

  • Glass molding

  • silica

  • chalcogenide glass

  • scanning electron microscopy

  • optic manufacturing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024