Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Coupling of Magnetothermal and Mechanical Superconducting Magnet Models by Means of Mesh-Based Interpolation

: Maciejewski, M.; Bayrasy, P.; Wolf, K.; Wilczek, M.; Auchmann, B.; Griesemer, T.; Bortot, L.; Prioli, M.; Navarro, A.M.F.; Schöps, S.; Garcia, I.C.; Verweij, A.P.


IEEE transactions on applied superconductivity 28 (2018), No.3, Art.4900905, 5 pp.
ISSN: 1051-8223
Journal Article
Fraunhofer SCAI ()

In this paper, we present an algorithm for the coupling of magnetothermal and mechanical finite element models representing superconducting accelerator magnets. The mechanical models are used during the design of the mechanical structure as well as the optimization of the magnetic field quality under nominal conditions. The magnetothermal models allow for the analysis of transient phenomena occurring during quench initiation, propagation, and protection. Mechanical analysis of quenching magnets is of high importance considering the design of new protection systems and the study of new superconductor types. We use field/circuit coupling to determine temperature and electromagnetic force evolution during the magnet discharge. These quantities are provided as a load to existing mechanical models. The models are discretized with different meshes and, therefore, we employ a mesh-based interpolation method to exchange coupled quantities. The coupling algorithm is illustrated with a simulation of a mechanical response of a standalone high-field dipole magnet protected with Coupling-Loss Induced Quench Technology.