Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Ultra-compact micro-optical system for multispectral imaging

 
: Hubold, M.; Berlich, R.; Gassner, C.; Brüning, R.; Brunner, R.

:

Wibool Piyawattanametha (Ed.) ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
MOEMS and Miniaturized Systems XVII : 30-31 January 2018, San Francisco, California, United States
Bellingham, WA: SPIE, 2018 (Proceedings of SPIE 10545)
ISBN: 978-1-5106-1575-5
ISBN: 978-1-5106-1576-2
Paper 105450V, 8 pp.
Conference "MOEMS and Miniaturized Systems" <17, 2018, San Francisco/Calif.>
English
Conference Paper
Fraunhofer IOF ()

Abstract
Optical systems for remote sensing commonly employ the principle of multi-/hyperspectral imaging, which is based on the acquisition of a set of two-dimensional images with distinct spectral bands in the ultra-violet, visible and/or infrared domain. Novel applications in the fields of environmental and agricultural monitoring, surveillance and biomedical inspection require miniaturized systems with high spectral and spatial sampling that furthermore enable a single shot image acquisition. However, conventional high resolution multi-spectral imaging solutions rely on bulky setups and depend on scanning techniques. In this work, we propose a multi-spectral imaging concept based on a multi-aperture system approach combined with a slanted linear variable spectral filter in order to overcome these restrictions. In particular, we demonstrate the optical design, fabrication and testing of a highly-compact, cost-effective multispectral imaging system, which exploits state of the art micro-optical manufacturing techniques on wafer level. The developed demonstration system incorporates a conventional full-frame format image sensor, a commercially available linear variable spectral filter and a customized microlens-array. In addition, a tailored baffle array is utilized for preventing optical crosstalk between adjacent optical channels. The setup enables the single-shot acquisition of 66 spectral channels with a linear spectral sampling over an extended wavelength range of 450-850 nm. The compact system with a size of only 60 x 60 x 28 mm3 provides a large field of view of 68° and a spatial sampling of 400x400 pixels per channel. Finally, we demonstrate its capabilities for advanced object classification by utilizing a customized multispectral analysis tool.

: http://publica.fraunhofer.de/documents/N-520639.html