Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry

 
: Biegler, Max; Marko, Angelina; Graf, Benjamin; Rethmeier, Michael

:

Additive manufacturing 24 (2018), pp.264-272
ISSN: 2214-8604
Bundesministerium für Wirtschaft und Technologie BMWi
IGF; 18737N; Schweißstruktursimulation
English
Journal Article
Fraunhofer IPK ()
DED; welding simulation; additive manufacturing; dimensional accuracy; digital image correlation

Abstract
With the recent rise in the demand for additive manufacturing (AM), the need for reliable simulation tools to support experimental efforts grows steadily. Computational welding mechanics approaches can simulate the AM processes but are generally not validated for AM-specific effects originating from multiple heating and cooling cycles. To increase confidence in the outcomes and to use numerical simulation reliably, the result quality needs to be validated against experiments for in-situ and post process cases. In this article, a validation is demonstrated for a structural thermomechanical simulation model on an arbitrarily curved Directed Energy Deposition (DED) part: at first, the validity of the heat input is ensured and subsequently, the model’s predictive quality for in-situ deformation and the bulging behaviour is investigated. For the in-situ deformations, 3D-Digital Image Correlation measurements are conducted that quantify periodic expansion and shrinkage as they occur. The results show a strong dependency of the local stiffness of the surrounding geometry. The numerical simulation model is set up in accordance with the experiment and can reproduce the measured 3 dimensional in-situ displacements. Furthermore, the deformations due to removal from the substrate are quantified via 3D scanning, exhibiting considerable distortions due to stress relaxation. Finally, the prediction of the deformed shape is discussed in regards to bulging simulation: to improve the accuracy of the calculated final shape, a novel extension of the model relying on the modified stiffness of inactive upper layers is proposed and the experimentally observed bulging could be reproduced in the finite element model.

: http://publica.fraunhofer.de/documents/N-515234.html