Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

3D object classification and parameter estimation based on parametric procedural models

 
: Getto, Roman; Fina, Kenten; Jarms, Lennart; Kuijper, Arjan; Fellner, Dieter W.

:
Fulltext (PDF; )

Skala, Vaclav (Ed.):
26. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, WSCG 2018. Full papers proceedings : Plzen, Czech Republic, May 28 - June 1, 2018
Brno: Vaclav Skala - Union Agency, 2018 (Computer Science Research Notes (CSRN) 2801)
ISBN: 978-80-86943-40-4
10 pp.
International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG) <26, 2018, Plzen>
English
Conference Paper, Electronic Publication
Fraunhofer IGD ()
procedural modeling; parametric modeling; parameterization; 3D Object; classification; deep learning; Guiding Theme: Digitized Work; Research Area: Computer graphics (CG)

Abstract
Classifying and gathering additional information about an unknown 3D objects is dependent on having a large amount of learning data. We propose to use procedural models as data foundation for this task. In our method we (semi-)automatically define parameters for a procedural model constructed with a modeling tool. Then we use the procedural models to classify an object and also automatically estimate the best parameters. We use a standard convolutional neural network and three different object similarity measures to estimate the best parameters at each degree of detail. We evaluate all steps of our approach using several procedural models and show that we can achieve high classification accuracy and meaningful parameters for unknown objects.

: http://publica.fraunhofer.de/documents/N-507029.html