• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Why reinvent the wheel. Let's build question answering systems together
 
  • Details
  • Full
Options
2018
Conference Paper
Title

Why reinvent the wheel. Let's build question answering systems together

Abstract
Modern question answering (QA) systems need to flexibly integrate a number of components specialised to fulfil specific tasks in a QA pipeline. Key QA tasks include Named Entity Recognition and Disambiguation, Relation Extraction, and Query Building. Since a number of different software components exist that implement different strategies for each of these tasks, it is a major challenge to select and combine the most suitable components into a QA system, given the characteristics of a question. We study this optimisation problem and train classifiers, which take features of a question as input and have the goal of optimising the selection of QA components based on those features. We then devise a greedy algorithm to identify the pipelines that include the suitable components and can effectively answer the given question. We implement this model within Frankenstein, a QA framework able to select QA components and compose QA pipelines. We evaluate the effectiveness of the pipelines generated by Frankenstein using the QALD and LC-QuAD benchmarks. These results not only suggest that Frankenstein precisely solves the QA optimisation problem but also enables the automatic composition of optimised QA pipelines, which outperform the static Baseline QA pipeline. Thanks to this flexible and fully automated pipeline generation process, new QA components can be easily included in Frankenstein, thus improving the performance of the generated pipelines.
Author(s)
Singh, Kuldeep  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Radhakrishna, Arun Sethupat
University of Minnesota, Minneapolis, MN, USA
Both, Andreas
DATEV eG, Germany, Nuremberg, Germany
Shekarpour, Saeedeh
University of Dayton, Dayton, OH, USA
Lytra, Ioanna  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Usbeck, Ricardo  
University of Paderborn, Paderborn, Germany
Vyas, Akhilesh
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Khikmatullaev, Akmal
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Punjani, Dharmen
University of Athens, Athens, Greece
Lange, Christoph  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Vidal, Maria-Esther  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Lehmann, Jens  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Auer, Sören  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
WWW 2018, World Wide Web Conference. Proceedings  
Project(s)
WDAqua  
BigDataEurope  
Funder
European Commission EC  
European Commission EC  
Conference
World Wide Web Conference (WWW) 2018  
DOI
10.1145/3178876.3186023
File(s)
N-499989.pdf (997.54 KB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024