Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Effective parallelisation for machine learning

: Kamp, Michael; Boley, Mario; Missura, Olana; Gärtner, Thomas

Fulltext urn:nbn:de:0011-n-4771621 (504 KByte PDF)
MD5 Fingerprint: e02aa3d9b07d330578220abe8bd89f47
Created on: 20.12.2017

Neural Information Processing Systems -NIPS- Foundation:
Advances in Neural Information Processing Systems 30, NIPS 2017. Online resource : 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, December 4-9, 2017
Long Beach/Calif., 2017
Paper 3243, 22 pp.
Conference on Neural Information Processing Systems (NIPS) <31, 2017, Long Beach/Calif.>
Conference Paper, Electronic Publication
Fraunhofer IAIS ()

We present a novel parallelisation scheme that simplifies the adaptation of learning algorithms to growing amounts of data as well as growing needs for accurate and confident predictions in critical applications. In contrast to other parallelization techniques, it can be applied to a broad class of learning algorithms without further mathematical derivations and without writing dedicated code, while at the same time maintaining theoretical performance guarantees. Moreover, our parallelization scheme is able to reduce the runtime of many learning algorithms to polylogarithmic time on quasi-polynomially many processing units. This is a significant step towards a general answer to an open question [21] on efficient parallelization of machine learning algorithms in the sense of Nick’s Class (NC). The cost of this parallelisation is in the form of a larger sample complexity. Our empirical study confirms the potential of our parallelisation scheme with fixed numbers of processors and instances in realistic application scenarios.