Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Materials Pushing the Application Limits of Wire Grid Polarizers further into the Deep Ultraviolet Spectral Range

: Siefke, T.; Kroker, S.; Pfeiffer, K.; Puffky, O.; Dietrich, K.; Franta, D.; Ohlidal, I.; Szeghalmi, A.; Kley, E.-B.; Tünnermann, A.

Fulltext (PDF; )

Advanced optical materials (2016)
ISSN: 2195-1071
Journal Article, Electronic Publication
Fraunhofer IOF ()

Wire grid polarizers (WGPs), periodic nano-optical metasurfaces, are convenient polarizing elements for many optical applications. However, they are still inadequate in the deep ultraviolet spectral range. It is shown that to achieve high performance ultraviolet WGPs a material with large absolute value of the complex permittivity and extinction coefficient at the wavelength of interest has to be utilized. This requirement is compared to refractive index models considering intraband and interband absorption processes. It is elucidated why the extinction ratio of metallic WGPs intrinsically humble in the deep ultraviolet, whereas wide bandgap semiconductors are superior material candidates in this spectral range. To demonstrate this, the design, fabrication, and optical characterization of a titanium dioxide WGP are presented. At a wavelength of 193 nm an unprecedented extinction ratio of 384 and a transmittance of 10% is achieved.