Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Improving the radiation hardness of space solar cells via nanophotonic light trapping

: Mellor, A.; Hylton, N.P.; Wellens, C.; Thomas, T.; Al-Saleh, Y.; Giannini, V.; Braun, A.; Hauser, H.; Maier, S.A.; Ekins-Daukes, N.J.


Institute of Electrical and Electronics Engineers -IEEE-:
IEEE 43rd Photovoltaic Specialists Conference, PVSC 2016 : 5-10 June 2016, Portland, Or.
Piscataway, NJ: IEEE, 2016
ISBN: 978-1-5090-2724-8 (Electronic)
ISBN: 978-1-5090-2725-5 (Print on Demand)
Photovoltaic Specialists Conference (PVSC) <43, 2016, Portland/Or.>
Conference Paper
Fraunhofer ISE ()

We show that the radiation-hardness of space solar cells can be significantly improved by employing nanophotonic light trapping. Two light-trapping structures are investigated in this work. In the first, an array of Al nanoparticles is embedded within the anti-reflection coating of a GaInP/InGaAs/Ge solar cell. A combined experimental and simulation study shows that this structure is unlikely to lead to an improvement in radiation hardness. In the second, a diffractive structure is positioned between the middle cell and the bottom cell. Computational results, obtained using an experimentally validated electro-optical simulation tool, show that a properly designed light-trapping structure in this position can lead to a relative 10% improvement in the middle-cell photocurrent at end-of-life.