Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Potential and recycling strategies for LCD panels from WEEE

 
: Ueberschaar, Maximilian; Schlummer, Martin; Jalalpoor, Daniel; Kaup, Nora; Rotter, Vera Susanne

:
Fulltext (PDF; )

Recycling 2 (2017), No.1, Art. 7, 19 pp.
ISSN: 2313-4321
English
Journal Article, Electronic Publication
Fraunhofer IVV ()

Abstract
Indium is one of the strategically important materials, which have been characterized as critical by various industrialized countries. Despite its high relevance, only low recycling rates are realized. Its main application is in indium tin oxide (ITO), which is used in the production of liquid crystal displays (LCD). However, recovery strategies for indium from LCDs are not yet being implemented in recycling practices. Although LCDs consist of a sandwich compound with additional materials such as glass (80% ± 5%) and polarizer foils (20% ± 5%), recently published recycling approaches focus mainly on the recovery of indium exclusively. This study, first of all, provides information about the quantity and quality of the materials applied in the LCD panels of the various equipment types investigated, such as notebooks, tablets, mobile phones, smartphones, PC monitors, and LCD TVs. The highest indium mass fraction per mass of LCD was determined in mobile phones and the least indium was found in smartphones. Additionally, we found the significant use of contaminating metals like antimony, arsenic, lead, and strontium in the glass fraction. Thus, specific recovery strategies should focus on selected equipment types with the highest indium potential, which is directly related to the sales of new devices and the number of collected end-of-life devices. Secondly, we have developed and successfully tested a novel recycling approach for separating the sandwich compound to provide single output fractions of panel glass, polarizer foils, and an indium concentrate for subsequent recycling. Unfortunately, the strongly varying content of contaminating metals jeopardizes the recycling of this output fraction. Nonetheless, economic recycling approaches need to address all materials contained, in particular those with the highest share in LCD panels such as polarizer foils and panel glass.

: http://publica.fraunhofer.de/documents/N-438795.html