Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Feature discovery in non-metric pairwise data

 
: Laub, J.; Müller, K.-R.

Journal of Machine Learning Research 5 (2004), No.2, pp.801-818
ISSN: 1533-7928
ISSN: 1532-4435
English
Journal Article
Fraunhofer FIRST ()

Abstract
Pairwise proximity data, given as similarity or dissimilarity matrix, can violate metricity. This occurs either due to noise, fallible estimates, or due to intrinsic non-metric features such as they arise from human judgments. So far the problem of non-metric pairwise data has been tackled by essentially omitting the negative eigenvalues or shifting the spectrum of the associated (pseudo) covariance matrix for a subsequent embedding. However, little attention has been paid to the negative part of the spectrum itself. In particular no answer was given to whether the directions associated to the negative eigenvalues would at all code variance other than noise related. We show by a simple, exploratory analysis that the negative eigenvalues can code for relevant structure in the data, thus leading to the discovery of new features, which were lost by conventional data analysis techniques. The information hidden in the negative eigenvalue part of the spectrum is illustrated and discussed for three data sets, namely USPS handwritten digits, text-mining and data from cognitive psychology.

: http://publica.fraunhofer.de/documents/N-43322.html