Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Induction of experimental autoimmune encephalomyelitis in mice and evaluation of the disease-dependent distribution of immune cells in various tissues

: Barthelmes, J.; Tafferner, N.; Kurz, J.; de Bruin, N.; Parnham, M.J.; Geisslinger, G.; Schiffmann, S.


Journal of visualized experiments : JoVE. Online resource 2016 (2016), No.111
ISSN: 1940-087X
Journal Article
Fraunhofer IME ()

Multiple sclerosis is presumed to be an inflammatory autoimmune disease, which is characterized by lesion formation in the central nervous system (CNS) resulting in cognitive and motor impairment. Experimental autoimmune encephalomyelitis (EAE) is a useful animal model of MS, because it is also characterized by lesion formation in the CNS, motor impairment and is also driven by autoimmune and inflammatory reactions. One of the EAE models is induced with a peptide derived from the myelin oligodendrocyte protein (MOG)35-55 in mice. The EAE mice develop a progressive disease course. This course is divided into three phases: the preclinical phase (day 0 - 9), the disease onset (day 10 - 11) and the acute phase (day 12 - 14). MS and EAE are induced by autoreactive T cells that infiltrate the CNS. These T cells secrete chemokines and cytokines which lead to the recruitment of further immune cells. Therefore, the immune cell distribution in the spinal cord during the three disease phases was investigated.