Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Rear side gratings for silicon solar cells: Efficiency enhancement finally demonstrated

 
: Bläsi, B.; Tucher, N.; Eisenlohr, J.; Lee, B.G.; Benick, J.; Hauser, H.; Hermle, M.; Goldschmidt, J.C.

:

Wehrspohn, R.B. ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
Photonics for Solar Energy Systems VI : 5-7 April 2016, Brussels, Belgium
Bellingham, WA: SPIE, 2016 (Proceedings of SPIE 9898)
ISBN: 978-1-5106-0143-7
Paper 98980A, 9 pp.
Conference "Photonics for Solar Energy Systems" <6, 2016, Brussels>
English
Conference Paper
Fraunhofer ISE ()
Solarzellen - Entwicklung und Charakterisierung; Photovoltaik; Silicium-Photovoltaik; Neuartige Photovoltaik-Technologien; Oberflächen - Konditionierung; Passivierung; Lichteinfang; Herstellung und Analyse von hocheffizienten Solarzellen; Photonenmanagement; gratings; solar cells; fabrication; optical modelling

Abstract
After more than 20 years of research on rear side gratings for light trapping in solar cells, we have been able to demonstrate enhanced efficiencies for crystalline silicon solar cells with two different grating concepts and solar cell architectures. In both cases planar front sides have been used. With hexagonal sphere gratings and the tunnel oxide passivated contact (TOPCon) concept, a grating induced Jsc increase of 1.4 mA/cm2 and an efficiency increase of 0.8%absolute could be achieved. With binary crossed gratings fabricated by a nanoimprint based process chain, a grating induced Jsc gain of 1.2 mA/cm2 and an efficiency gain of 0.7% absolute could be achieved. For the binary grating concept, cell thickness variations have also been performed. The increasing importance of the light trapping properties towards low solar cell thicknesses could be confirmed by an enhanced EQE in the long wavelength region (Jsc increase: 1.6 mA/cm2 for 150 μm and 1.8 mA/cm2 for 100 μm thick solar cells). The results are in very good agreement with simulations using the OPTOS modeling formalism. OPTOS enables the further analysis and optimization of grating concepts in silicon solar cells and modules. So a grating induced Jsc gain of 0.8 mA/cm2 is forecast for solar cells with pyramidal front side texture. On module level, still a grating induced Jsc gain of 0.6 mA/cm2 can be expected.

: http://publica.fraunhofer.de/documents/N-411100.html