• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Pattern recognition in load profiles of electric drives in manufacturing plants
 
  • Details
  • Full
Options
2015
Conference Paper
Title

Pattern recognition in load profiles of electric drives in manufacturing plants

Abstract
With the introduction of energy management systems, an analysis of load profiles of manufacturing plants becomes increasingly important. Each manufacturing plant is characterized by a process and product specific power consumption. Often, electric drives are the main power consumers. In this paper methods for pattern recognition in load profiles of electric drives are presented on the example of a multiaxial lathe. A transfer of techniques used for speech recognition e.g. Hidden Markov Models, Fourier and Wavelet Transforms to manufacturing application is discussed. In combination with energy measurement systems, those techniques proved to be a good solution regarding energy efficiency calculations and derivation for key performance indicators. The investigated methods can also be applied to other process data with significant cost advantages, because a lot of process information can be extracted from a single sensor.
Author(s)
Reger, Arnim
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Oette, Cedric
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Aires, Ana Paula
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Steinhilper, Rolf
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Mainwork
5th International Electric Drives Production Conference, EDPC 2015. Proceedings  
Conference
International Electric Drives Production Conference (EDPC) 2015  
DOI
10.1109/EDPC.2015.7323209
Language
English
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • pattern recognition

  • Hidden Markov Models

  • Wavelet-Transformation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024