• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Ultrathin titanium dioxide nanolayers by atomic layer deposition for surface passivation of crystalline silicon
 
  • Details
  • Full
Options
2016
Journal Article
Title

Ultrathin titanium dioxide nanolayers by atomic layer deposition for surface passivation of crystalline silicon

Abstract
We demonstrate a low surface recombination velocity of 14 cm/s with only 1.5 nm thin titanium dioxide (TiO2) layers on undiffused 10 Omega cm p-type crystalline silicon. The TiO2 nanolayers were deposited by thermal atomic layer deposition at 150 degrees C and 200 degrees C substrate temperatures using tetrakis-dimethyl-amido titanium as the Ti precursor and water as the oxidant. The influence of a post-deposition anneal in forming gas at different temperatures was investigated. We have observed that a subsequent anneal in forming gas at 350 degrees C enhances the surface passivation quality of the TiO2 layers tremendously. Increasing the thickness of the TiO2 layers leads to a reduction of the surface passivation quality. Introducing a thin interfacial layer of silicon oxide (1.6 nm) grown by rapid thermal oxidation underneath the TiO2 layer improves the surface passivation of thicker TiO2 layers (5.5 and 15 nm). These results show that ultrathin TiO2 layers with a thickness of only 1.5 nm can be used to effectively passivate the c-Si surface.
Author(s)
Gad, K.M.
Vössing, D.
Richter, Armin  
Rayner, B.
Reindl, L.M.
Mohney, S.E.
Kasemann, Martin
Journal
IEEE Journal of Photovoltaics  
Funder
National Science Foundation NSF  
DOI
10.1109/JPHOTOV.2016.2545404
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Solarzellen - Entwicklung und Charakterisierung

  • Photovoltaik

  • Silicium-Photovoltaik

  • Oberflächen - Konditionierung

  • Passivierung

  • Lichteinfang

  • Kontaktierung und Strukturierung

  • passivation

  • layer deposition

  • ALD

  • titanum dioxide nanolayers

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024