Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

An in-situ numerical-experimental approach for fatigue delamination characterization in Microelectronic Packages

 
: Poshtan, E.A.; Rzepka, S.; Silber, C.; Wunderle, B.

:

Institute of Electrical and Electronics Engineers -IEEE-; IEEE Components, Packaging, and Manufacturing Technology Society:
16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2015 : 19-22 April 2015, Budapest, Hungary
Piscataway, NJ: IEEE, 2015
ISBN: 978-1-4799-9949-1 (Print)
ISBN: 978-1-4799-9950-7
ISBN: 978-1-4799-9951-4
pp.38-43
International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE) <16, 2015, Budapest>
English
Conference Paper
Fraunhofer ENAS ()

Abstract
An in-situ and cost-effective numerical-experimental approach for fatigue characterization of bi-material interfaces in Microelectronic Packages is presented. In this method using a sample-centered approach a Miniaturized Sub-Critical Bending (MSCB) test setup is designed and fabricated based on the samples that are acquired directly from production-line. The accuracy of the results and stiffness of the test-set up is validated using digital image correlation method. The delamination growth is measured using a compliance-based numerical-experimental method under sub-critical cyclic loading. The critical and threshold toughness values being FC and Fth are measured. The sample are examined after tests using EDX and SEM measurements. The fractographical study of samples shows that, although some of the molding compound particles are left on the LF surface, the interfacial fracture is the dominant failure mode.

: http://publica.fraunhofer.de/documents/N-383288.html