Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Brain-computer communication and slow cortical potentials

: Hinterberger, T.; Schmidt, S.; Neumann, N.; Mellinger, J.; Blankertz, B.; Curio, G.; Birbaumer, N.


IEEE Transactions on Biomedical Engineering BME 51 (2004), No.6, pp.1011-1018
ISSN: 0018-9294
ISSN: 1558-2531
Journal Article
Fraunhofer FIRST ()

A thought translation device (TTD) has been designed to enable direct brain-computer communication using self-regulation of slow cortical potentials (SCPs). However, accuracy of SCP control reveals high intersubject variability. To guarantee the highest possible communication speed, some important aspects of training SCPs are discussed. A baseline correction of SCPs can increase performance. Multichannel recordings show that SCPs are of highest amplitude around the vertex electrode used for feedback, but in some subjects more global distributions were observed. A new method for control of eye movement is presented. Sequential effects of trial-to-trial interaction may also cause difficulties for the user. Finally, psychophysiological factors determining SCP communication are discussed.