Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Metal-supported palladium membranes for hydrogen separation

 
: Haydn, M.; Ortner, K.; Franco, T.; Schafbauer, W.; Behrens, A.; Dittmar, B.; Hummel, S.; Sulik, M.; Rüttinger, M.; Venskutonis, A.; Sigl, L.S.

European Powder Metallurgy Association -EPMA-:
EURO PM 2014 Congress & Exhibition : Proceedings; 21 - 24 September 2014, The Messezentrum Salzburg, Austria
Stockholm: EPMA, 2014
ISBN: 978-1-899072-45-3
6 Bl.
International Powder Metallurgy Congress and Exhibition (Euro PM) <2014, Salzburg>
English
Conference Paper
Fraunhofer IST ()
palladium; thin film; hydrogen production; membrane; ITM

Abstract
The demand for clean and green energy has raised the consumption of hydrogen continuously during the last years. Hydrogen is most economically produced in large scale systems by methane steam reforming followed by pressure swing adsorption (PSA). However, with a rising demand for small-scale production of hydrogen, and as down-scaling to smaller PSA-systems (< 500 Nm³/h H2) is not economic, a substantial demand for hydrogen generation using palladium membranes has emerged.
Porous tubes made of an oxide dispersion strengthened powder metallurgy (PM) Fe-Cr alloys (trade name ITM) constitute the backbone for the thin, solid Pd films. The tubes provide mechanical and chemical long-term stability in atmospheres with hydrogen- and carbon-species at operation temperatures up to 600 °C. A porous ceramic diffusion barrier layer (DBL) is needed between the ITM-backbone and the Pd thin-film to avoid Pd diffusion into the Fe-Cr substrate and therefore ensure long-term integrity of the system. The Pd thin-film with a thickness < 10 µm is applied onto the DBL by a proprietary PVD coating technology.
This paper briefly describes the production route for the tube/DBL/Pd-membrane system and the structure thereof. The performance in terms of hydrogen quality, membrane selectivity and productivity is discussed.

: http://publica.fraunhofer.de/documents/N-316158.html