• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Approximation methods for the uniform coverage problem in the spunbond process
 
  • Details
  • Full
Options
2014
Doctoral Thesis
Title

Approximation methods for the uniform coverage problem in the spunbond process

Abstract
The homogeneous deposition of material on complex surfaces, e.g., powder coating, paint spraying, fiber lay-down etc., is a well-known task in industrial production. This thesis introduces a mathematical modeling for a typical process class of such uniform coverage problems motivated by the spunbond process. Three different models are described. In the asymptotic model, a simplified uniform coverage problem is solved analytically in terms of Abel solutions. In the semi-asymptotic model, one of the simplifications is revoked and it is proven that the Abel solutions perform very well. Finally, in the complete finite model, convergence to the first model is proven, which implies that the Abel solutions show a desirable approximative behaviour. In the numerical part, the uniform coverage problem is solved in terms of a modified Remez-Algorithm. The Abel solutions are compared to the Remez solutions and their usage is justified.
Thesis Note
Zugl.: Kaiserslautern, TU, Diss., 2013
Author(s)
Nowak, Dimitri  
Publisher
Fraunhofer Verlag  
Publishing Place
Stuttgart
File(s)
Download (8.82 MB)
Rights
Use according to copyright law
DOI
10.24406/publica-fhg-280172
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • Angewandte Forschung

  • applied research

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024