Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media

: Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha


Journal of contaminant hydrology 164 (2014), pp.25-34
ISSN: 0169-7722
ISSN: 1873-6009
Journal Article
Fraunhofer IKTS ()
nanoscale zero-valent iron (nZVI); carbo-iron; in-situ remediation; colloid transport

Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50 = 2.4 μm) are investigated in column tests using columns of 40 cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5 mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from − 62 mV to − 80 mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions.