Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

New fiber matrix process with 3D fiber printer - a strategic in-process integration of endless fibers using fused deposition modeling (FDM)

: Fischer, A.; Rommel, S.; Bauernhansl, T.


Kovacs, G.L. ; International Federation for Information Processing -IFIP-:
Digital Product and Process Development Systems. IFIP TC 5 International Conference, NEW PROLAMAT 2013 : Dresden, Germany, October 10-11, 2013, Proceedings
Berlin: Springer, 2013 (IFIP advances in information and communication technology 411)
ISBN: 978-3-642-41328-5 (Print)
ISBN: 978-3-642-41329-2 (Online)
ISBN: 3-642-41328-5
International Conference "NEW PROLAMAT" <5, 2013, Dresden>
Conference Paper
Fraunhofer IPA ()
Additive Manufacturing (AM); fused deposition modelling; 3D-Printing; Leichtbau; Faserverbundwerkstoff (FWV)

Product manufacturers are faced with a constant decrease in product development time, short product life cycles and an increase of complexity of the products. At the same time, it is becoming more and more difficult to justify the expected product features while satisfying the requirements of the trends like eco-design, resource efficiency, light weight design and individualization. These developments are key characteristics which favor the growing role and importance of additive manufacturing (AM). Additive Manufacturing techniques such as Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS) or Selective Laser Melting (SLM) are transitions from building prototypes to manufacturing series products within short time and with highest requirements regarding material characteristics as well as product performance. Product performance is one of the main drivers of the creation of multi-material composites. These composites, existing of a matrix and embedded fibers, are more and more used in various industries not just the aerospace and automotive industry. They offer a solution to the light-weight requirements amongst others. Yet, so far the manufacturing of composites is only partially automated; it requires a lot of manual labor and is typically requiring tools resulting in added costs. A combination or integration of additive and composite manufacturing is very limited to not existing, being an indicator for the difficulties to bring these two technologies together. To meet this challenge the 3D Fiber Print has been developed. It is an AM method using Fused Deposition Modeling (FDM) and composites in process simultaneously while manufacturing a product. The products are still manufactured layer-wise, with each layer containing a composite on-demand. The newly developed and patented print head is designed in the way that composite and matrix material are applied in the right setup and ration using a nozzle style print head to completely embed the composite. This paper presents the setup and possibilities of this new application.