Options
2005
Doctoral Thesis
Title
Adaptive Verfahren zur Bewertung texturierter Oberflächen
Other Title
Adaptive methods for the classification of textured surfaces
Abstract
Aufgabenstellung: Sowohl technische als auch natürliche Oberflächen weisen in der Regel eine charakteristische Oberflächenausprägung (Textur) auf, die eine Unterscheidung und Klassifizierung zulässt. Zielsetzung der vorliegenden Arbeit ist die Entwicklung von Verfahren, die den Anwender bei der Adaption von Oberflächenprüfsystemen an neue oder veränderte Prüfaufgaben unterstützen. Im Zentrum steht die automatische Selektion von Texturmerkmalen und die Optimierung von Texturparametern. Die automatische Adaption findet auf Grundlage von Beispieltexturen statt, die vom Anwender zuvor bewertet werden. Lösungsansatz: Kennzeichnend für die vorliegende Arbeit ist die Realisierung eines rückgekoppelten Verarbeitungsschemas, das die Optimierung von Texturmerkmalen und Parametern zum Ziel hat. Die für die Optimierung erforderlichen Gütekriterien basieren auf der Analyse der klassenspezifischen Verteilungen im Merkmalsraum sowie auf Verifikationsmaßen, die aus der Klassifikation von Beispieltexturen gewonnen werden. Diese Gütekriterien werden sowohl für die Merkmalsselektion als auch für die Parameteroptimierung mit Evolutionsstrategien eingesetzt. Einen weiteren Schwerpunkt der Arbeit stellt die Entwicklung rotationsinvarianter Texturmerkmale dar, die durch Randomisierung der Analyserichtung erreicht werden konnte. Alle entwickelten Verfahren wurden in das modular aufgebaute System "Adaptex" zur adaptiven Texturanalyse integriert. Anwendung des Verfahrens: Um die Verfahren zu validieren, wurden umfangreiche Benchmarktests durchgeführt. Dabei konnten die in der Literatur dokumentierten Fehlerraten drastisch unterschritten werden. Ihre Tauglichkeit für den industriellen Einsatz haben die Verfahren u.a. bei der Inspektion von medizinischen Kollagenschwämmen und Kaltfließpressteilen unter Beweis gestellt.
;
Task: In general, technical as well as natural surfaces exhibit a characteristic surface structure (texture) permitting their discrimination and classification. The objective of this work consists in the development of methods supporting the adaptation of surface inspection systems to new or modified inspection tasks. Its focus is set on the automatic selection of texture features and the optimisation of texture parameters. The automatic adaptation is based on sample sets which have been classified by the user in advance. Solution: Characteristic for this work is a feedback loop in the processing chain which enables the optimisation of texture features and parameters. The fitness criteria for the optimisation are based on the analysis of class-specific feature distributions as well as on verification scores obtained from the classification of sample sets. These fitness criteria are used both for feature selection and parameter optimisation with evolution strategies. Another topic of the work is the development of rotation-invariant texture features which were realized by randomising the operator orientation. All implemented methods have been integrated in the modular system "Adaptex" for adaptive texture analysis. Application: In order to validate the methods extensive benchmark tests have been carried out. As a result, error rates have been achieved being significantly below error rates reported in the literature. The industrial applicability of the methods has been proved, e.g. for the inspection of medical foams and cold-forged parts.
Thesis Note
Zugl.: Stuttgart, Univ., Diss., 2004
Keyword(s)