Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Passivation of solar cell emitters using aluminum nitride

 
: Krugel, G.; Sharma, A.; Moldovan, A.; Wolke, W.; Rentsch, J.; Preu, R.

:
Postprint urn:nbn:de:0011-n-2838483 (1.1 MByte PDF)
MD5 Fingerprint: c3cd110d878bc28039cbc4a9222ce1c8
© IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Created on: 25.4.2014


Institute of Electrical and Electronics Engineers -IEEE-; IEEE Electron Devices Society; Institute of Electrical and Electronics Engineers -IEEE-, Power & Energy Society -PES-:
39th IEEE Photovoltaic Specialists Conference, PVSC 2013 : Tampa, Florida, USA, 16.06.2013-21.06.2013
Piscataway, NJ: IEEE, 2013
ISBN: 978-1-4799-3299-3
pp.1249-1253
Photovoltaic Specialists Conference (PVSC) <39, 2013, Tampa/Fla.>
English
Conference Paper, Electronic Publication
Fraunhofer ISE ()
PV Produktionstechnologie und Qualitätssicherung; Silicium-Photovoltaik; Charakterisierung von Prozess- und Silicium-Materialien; Oberflächen - Konditionierung; Passivierung; Lichteinfang; Pilotherstellung von industrienahen Solarzellen; Produktionsanlagen und Prozessentwicklung; passivation; emitter; nitride

Abstract
Layers of hydrogenated aluminum nitride have proven excellent passivation properties on lowly doped silicon. Effective surface recombination velocities below 8 cm/s have been reached due to a very low interface defect density. In this work, the passivation of highly doped silicon is studied by measuring the emitter saturation current of boron as well as phosphorous emitters. It is shown that hydrogenation is a prerequisite for reaching effective passivation. Emitter saturation current densities of around 100 fA/cm2 are presented for highly doped p+-type and n+-type silicon allowing maximal open circuit voltages of ~680 mV for silicon solar cells.

: http://publica.fraunhofer.de/documents/N-283848.html