Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

The (B)erlin (B)rain-(C)omputer (I)interface

: Blankertz, B.; Tangermann, M.; Popescu, F.; Krauledat, M.; Fazli, S.; Dónaczy, M.; Curio, G.; Müller, K.-R.


Zurada, Jacek M. (Hrsg.); Yen, Gary G. (Hrsg.); Wang, Jun (Hrsg.):
Computational intelligence: Research frontiers. Plenary/invited lectures : IEEE World Congress on Computional Intelligence, WCCI 2008, Hong Kong, China, June 1-6, 2008
Berlin: Springer, 2008 (Lecture Notes in Computer Science (LNCS) 5050)
ISBN: 3-540-68858-7
ISBN: 978-3-540-68858-7
World Congress on Computional Intelligence (WCCI) <2008, Hong Kong>
Conference Paper
Fraunhofer FIRST ()
Fraunhofer FOKUS ()

The Berlin Brain-Computer Interface (BBCI) uses a machine learning approach to extract subject-specific patterns from high-dimensional EEG-features optimized for revealing the user's mental state. Classical BCI application are brain actuated tools for patients such as prostheses (see Section 4.1) or mental text entry systems ([2] and see [3,4,5,6] for an overview on BCI). In these applications the BBCI uses natural motor competences of the users and specifically tailored pattern recognition algorithms for detecting the user's intent. But beyond rehabilitation, there is a wide range of possible applications in which BCI technology is used to monitor other mental states, often even covert ones (see also [7] in the fMRI realm). While this field is still largely unexplored, two examples from our studies are exemplified in Section 4.3 and 4.4