Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Plasmaphysikalische Charakterisierung einer magnetfeldgestützten Hohlkathoden-Bogenentladung und ihre Anwendung in der Vakuumbeschichtung

 
: Zimmermann, B.

:
Fulltext ()

Dresden, 2012, XVIII, 119 pp.
Dresden, TU, Diss., 2012
URN: urn:nbn:de:bsz:14-qucosa-101747
German
Dissertation, Electronic Publication
Fraunhofer FEP ()

Abstract
Die vorliegende Dissertation behandelt Charakterisierung, Modellbildung sowie Anwendung einer magnetfeldgestützten Hohlkathoden-Bogenentladung. Hohlkathoden sind seit den 1960er Jahren Gegenstand grundlagen- sowie anwendungsorientierter Forschung und werden seit 20 Jahren am Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik für die Anwendung auf dem Gebiet der Vakuumbeschichtung weiterentwickelt. Ziel dieser Arbeit ist es, die technologischen Fortschritte physikalisch zu verstehen und gezielte Weiterentwicklungen für spezifische Einsatzgebiete zu ermöglichen. In der untersuchten Hohlkathodenbauform ist das aus Tantal bestehende, vom Arbeitsgas Argon durchströmte Kathodenröhrchen koaxial von einer Ringanode sowie von einer Magnetfeldspule umgeben. Die Entladung wird durch Hochspannungspulse gezündet, worauf sich ein diffuser Bogen im Röhrchen (internes Plasma) ausbildet. Das Röhrchen wird von Plasmaionen auf hohe Temperaturen geheizt, die eine thermionische Emission von Elektronen ermöglichen, welche das Plasma speisen. Das technologisch nutzbare externe Plasma wird im Vakuumrezipienten durch Wechselwirkung der Gasteilchen mit Strahlelektronen aus der Kathode erzeugt. Bei starker Reduktion des Arbeitsgasflusses wird die Entladung durch das Magnetfeld der Spule stabilisiert. Der experimentelle Befund, dass dadurch Plasmadichte und -reichweite sowie ggf. die Ladungsträgerenergien im Rezipienten aufgrund des intensiveren Elektronenstrahls wesentlich gesteigert werden können, wird durch ortsaufgelöste Langmuir-Sondenmessung, optische Emissionsspektroskopie und energieaufgelöste Massenspektrometrie ausführlich belegt und nach der Lösung von Strom- und Wärmebilanzgleichungen durch die Verhältnisse im Kathodenröhrchen begründet. Neben Argon werden auch typische Reaktivgase der Vakuumbeschichtung im Hohlkathodenplasma betrachtet: zum einen Stickstoff und Sauerstoff, die in reaktiven PVD-Prozessen (physikalische Dampfphasenabscheidung) zur Beschichtung mit Oxid- bzw. Nitridschichten zum Einsatz kommen und durch Ionisation, Dissoziation und Anregung im Hohlkathodenplasma verbesserte Schichteigenschaften ermöglichen; zum anderen Azetylen, das bei PECVD (plasmagestützte chemische Dampfphasenabscheidung) von amorphen wasserstoffhaltigen Kohlenstoffschichten z. B. für tribologische oder biokompatible Beschichtungen genutzt wird. Azetylen wird durch Streuprozesse mit Elektronen und Ionen im Plasma aufgespalten, wodurch schichtbildende Spezies erzeugt werden, die am Substrat kondensieren. Durch die Wahl der Plasmaparameter sowie durch abgestimmte Substratbiasspannung und Substratkühlung lassen sich die Beschichtungsrate einstellen sowie polymer-, graphit- oder diamantartige Eigenschaften erzielen. Neben der Plasmadiagnostik mittels energieaufgelöster Massenspektrometrie werden die erzeugten Kohlenstoffschichten vorgestellt und hinsichtlich Härte, Zusammensetzung und Morphologie analysiert.

: http://publica.fraunhofer.de/documents/N-256689.html