Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Impact of permeation properties and backsheet-encapsulant interactions on the reliability of PV modules

 
: Peike, C.; Hülsmann, P.; Blüml, M.; Schmidl, P.; Weiß, K.-A.; Köhl, M.

:
Fulltext urn:nbn:de:0011-n-2416708 (696 KByte PDF)
MD5 Fingerprint: 40354cebbfaf12f79392c5cc803e12fe
Created on: 24.5.2013


ISRN renewable energy (2012), Art. 459731, 5 pp.
ISSN: 2090-746X
ISSN: 2090-7451
English
Journal Article, Electronic Publication
Fraunhofer ISE ()
photovoltaisches Modul; System und Zuverlässigkeit; Gebrauchsdaueranalyse und Umweltsimulation

Abstract
The reliability of photovoltaic modules is highly influenced by the material properties of the backsheet and encapsulation material. Currently, little attention is paid to the permeation properties of the back-sheet material or to its impact on encapsulation degradation and module reliability. We investigated the interaction of different types of solar encapsulation and back-sheet materials. Therefore, various laminates were made to examine the environmental impact on such materials during the aging processes. One focus of our study lies in oxygen and water vapor permeability of the back-sheet materials. The encapsulants used were an ethylene vinyl acetate (EVA), a TPSE (thermoplastic silicone elastomer), an ionomer, and a PVB (polyvinyl butyral). Back-sheet materials were a TPT (Tedlar-PET-Tedlar) foil, a polyamide (PA) sheet and a polyethylene terephthalate (PET) composite film. Raman spectroscopic and FT-IR/vis-reflectance measurements were carried out before and after different accelerated aging procedures. The water vapor and oxygen permeation properties were measured. A clear correlation between the permeation properties and the observed aging behavior was found. The degradation, especially of the encapsulant, resulted in increased fluorescence background in the Raman spectra. It could be shown that the encapsulation-cell-backsheet system should be optimized in order to minimize the stress on the PV-module components.

: http://publica.fraunhofer.de/documents/N-241670.html