Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Boron emitter passivation with AI2O3 and AI2O3/SiNx stacks using ALD AI2O3

: Richter, A.; Benick, J.; Hermle, M.


IEEE Journal of Photovoltaics 3 (2013), No.1, pp.236-245
ISSN: 2156-3381
Journal Article
Fraunhofer ISE ()
Solarzellen - Entwicklung und Charakterisierung; Silicium-Photovoltaik; Oberflächen - Konditionierung; Passivierung; Lichteinfang; Herstellung und Analyse von hocheffizienten Solarzellen; Produktionsanlagen und Prozessentwicklung

Thin layers of Al2O3 are known to feature excellent passivation properties on highly boron-doped silicon surfaces. In this paper, we present a detailed study of the passivation quality of Al2O3 single layers and stacks of Al2O3 and antireflection SiNx on boron-doped emitters, where the Al2O3 was deposited by plasma-assisted atomic layer deposition and the SiNx by plasma-enhanced chemical vapor deposition. The passivation quality was studied for different atomic layer deposition temperatures, as a function of the Al2O3 layer thickness, as well as on samples with planar and random pyramids textured surfaces. These investigations were performed for different boron emitter diffusions, such as shallow, industrial emitters with high surface concentrations, as well as driven-in emitters with low surface concentrations. For all these variations, we compared systematically different thermal post-deposition treatments to activate the Al2O3 passivation, i.e., annealing processes at moderate temperatures and short high-temperature processes, as required for firing printed metal contacts. Therefore, symmetrically processed p+np + samples were fabricated, which were characterized with the photoconductance decay technique to determine emitter saturation current densities. Finally, the longtime stability of the Al2O3/SiNx stacks with planar and textured surfaces was investigated with an accelerated ultraviolet (UV) exposure experiment, miming about 34 month of outdoor performance.