Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Nitric acid-stabilized superparamagnetic iron oxide nanoparticles studied with X-rays

: Mandel, Karl-Sebastian; Szczerba, Wojciech; Thünemann, Andreas F.; Riesemeier, Heinrich; Girod, Matthias; Sextl, Gerhard


Journal of nanoparticle research 14 (2012), No.8, Art. 1066, 9 pp.
ISSN: 1388-0764
ISSN: 1572-896X
Journal Article
Fraunhofer ISC ()
Nanopartikel; Eisenoxide; Superparamagnetismus; Röntgenbeugung; Röntgendiffraktometrie; Röntgenabsorptionsspektroskopie; Röntgenkleinwinkelspektroskopie; SAXS

Agglomerated superparamagnetic iron oxide nanoparticles can easily and in large scale be precipitated from iron salt solutions. Although the process is well known, it is ambiguously either assumed that magnetite or maghemite is obtained. The first part of our study clarifies this question using X-ray absorption spectroscopy. For further processing of the nanoparticles, i.e., for giving them a surface functionality or incorporating them into composites, it is important to break the agglomerates and individualize the particles at first. This can effectively be done with nitric acid treatment. The influence of this process on the particles chemistry and structure was analyzed in great detail using X-ray diffraction, X-ray absorption, and small-angle X-ray scattering. In contrast to our expectation, no oxidation from magnetite (Fe3O4) to maghemite (y-Fe2O3) was found; the formal valence of the particles in any case is magnetite (Fe3O4). Instead, an increase in the particles' surface disorder was discovered from X-ray absorption analyses and high-resolution transmission electron microscopy. The acid treatment roughens and distorts the surface of the nanoparticles which is connected with an increased spin disorder.