Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Using Simulation for Assessing the Real Impact of Test-Coverage on Defect-Coverage

: Briand, L.C.; Pfahl, D.


IEEE Transactions on Reliability 49 (2000), No.1, pp.60-70 : Ill., Lit.
ISSN: 0018-9529
Journal Article
Fraunhofer IESE ()
defect coverage; Monte Carlo method; software test; test coverage; test intensity

The use of test coverage measures (e.g., block coverage) to control the software test process has become an increasingly common practice. This is justified by the assumption that higher test coverage helps achieve higher defect coverage and therefore improves software quality. In practice, data often shows that defect coverage and test coverage grow over time, as additional testing is performed. However, it is unclear whether this phenomenon of concurrent growth can be attributed to a causal dependency, or if it is coincidental, simply due to the cumulative nature of both measures. Answering such a question is important as it determines whether a given test coverage measure should be monitored for quality control and used to drive testing. Although this is no general answer to the problem above, we propose a procedure to investigate whether any test coverage criterion has a genuine additional impact on defect coverage when compared to the impact of just running additional test cases. This procedure is applicable in typical testing conditions where the software is tested once, according to a given strategy, and where coverage measures are collected as well as defect data. We then test the procedure on published data and compare our results with the original findings. The study outcomes do not support the assumption of a causal dependency between test coverage and defect coverage, a result for which several plausible explanations are provided.