Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

New sputtering concept for optical precision coatings

: Rademacher, D.; Bräuer, G.; Vergöhl, M.; Fritz, B.; Zickenrott, T.


Lequime, M. ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
Advances in Optical Thin Films IV : SPIE Optical System Design 2011, 5.-8.9.2011, Marseille, France
Bellingham, WA: SPIE, 2011 (Proceedings of SPIE 8168)
ISBN: 978-0-8194-8794-0
Paper 81680O1
Conference "Advances in Optical Thin Films" <4, 2011, Marseille>
Conference Paper
Fraunhofer IST ()
new sputter concept; optical coatings; magnetron sputtering; cylindrical targets; particles

The deposition of optical precision coatings on glass by magnetron sputtering is still a challenging problem regarding particle density and long term stability of coating plants due to target material erosion. A novel approach to increase process stability and reduce drifts is the usage of cylindrical cathodes. These cathodes allow a particle free deposition process as they have virtually no redeposition zones that can lead to destruction of coatings by arcing caused by surface charges. In the present paper optical single layers as well as multilayer coatings were sputtered by means of reactive magnetron sputtering using a double cylindrical cathode setup. The particle density is determined and compared to particles produced with planar magnetrons. A new sputter coater concept will be presented wherein the magnetrons are attached to a rotating disc coater in a sputter-up configuration. The process was stabilized by means of oxygen partial pressure control. Preliminary optical properties as well as deposition rates of different oxide films will be presented.