• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Continuum modeling of dislocation plasticity: Theory, numerical implementation, and validation by discrete dislocation simulations
 
  • Details
  • Full
Options
2011
Journal Article
Title

Continuum modeling of dislocation plasticity: Theory, numerical implementation, and validation by discrete dislocation simulations

Abstract
Miniaturization of components and devices calls for an increased effort on physically motivated continuum theories, which can predict size-dependent plasticity by accounting for length scales associated with the dislocation microstructure. An important recent development has been the formulation of a Continuum Dislocation Dynamics theory (CDD) that provides a kinematically consistent continuum description of the dynamics of curved dislocation systems [T. Hochrainer, et al., Philos. Mag. 87, 1261 (2007)]. In this work, we present a brief overview of dislocation-based continuum plasticity models. We illustrate the implementation of CDD by a numerical example, bending of a thin film, and compare with results obtained by three-dimensional discrete dislocation dynamics (DDD) simulation.
Author(s)
Sandfeld, S.
Hochrainer, T.
Zaiser, M.
Gumbsch, P.
Journal
Journal of Materials Research  
Open Access
DOI
10.1557/jmr.2010.92
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024