Options
2011
Journal Article
Title
Intranasal c-di-GMP-adjuvanted plant-derived H5 influenza vaccine induces multifunctional Th1 CD4+ cells and strong mucosal and systemic antibody responses in mice
Abstract
Vaccination is the best available measure of limiting the impact of the next influenza pandemic. Ideally, a candidate pandemic influenza vaccine should be easy to administer and should elicit strong mucosal and systemic immune responses. Production of influenza subunit antigen in transient plant expression systems is an alternative to overcome the bottleneck in vaccine supply during influenza pandemic. Furthermore, a needle-free intranasal influenza vaccine is an attractive approach, which may provide immunity at the portal of virus entry. The present study investigated the detailed humoral and cellular immune responses in mice vaccinated intranasally or intramuscularly with plant-derived influenza H5N1 (A/Anhui/1/05) antigen alone or formulated with bis-(3,5)-cyclic dimeric guanosine monophosphate (c-di-GMP) as adjuvant. The use of c-di-GMP as intramuscular adjuvant did not enhance the immune response to plant-derived influenza H5 antigen. However, intranasal c-di-GMP- adjuvanted vaccine induced strong mucosal and systemic humoral immune responses. Additionally, the intranasal vaccine elicited a balanced Th1/Th2 profile and, most importantly, high frequencies of multifunctional Th1 CD4+ cells. Our results highlight that c-di-GMP is a promising mucosal adjuvant for pandemic influenza vaccine development.