Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Computer-aided detection as a decision assistant in chest radiography

: Samulski, M.R.M.; Snoeren, P.R.; Platel, B.; Ginneken, B. van; Hogeweg, L.; Schaefer-Prokop, C.; Karssemeijer, N.


Manning, D.J. ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
Medical Imaging 2011: Image Perception, Observer Performance, and Technology Assessment : 16 - 17 February 2011, Lake Buena Vista, Florida, United States
Bellingham, WA: SPIE, 2011 (Proceedings of SPIE 7966)
ISBN: 978-0-8194-8508-3
ISSN: 1605-7422
Paper 796614
Conference "Image Perception, Observer Performance, and Technology Assessment" <2011, Lake Buena Vista/Fla.>
Medical Imaging Symposium <2011, Lake Buena Vista/Fla.>
Conference Paper
Fraunhofer MEVIS ()

Background. Contrary to what may be expected, finding abnormalities in complex images like pulmonary nodules in chest radiographs is not dominated by time-consuming search strategies but by an almost immediate global interpretation. This was already known in the nineteen-seventies from experiments with briefly flashed chest radiographs. Later on, experiments with eye-trackers showed that abnormalities attracted the attention quite fast but often without further reader actions. Prolonging one's search seldom leads to newly found abnormalities and may even increase the chance of errors. The problem of reading chest radiographs is therefore not dominated by finding the abnormalities, but by interpreting them. Hypothesis. This suggests that readers could benefit from computer-aided detection (CAD) systems not so much by their ability to prompt potential abnormalities, but more from their ability to 'interpret' the potential abnormalities. In this paper, this hypothesis was investigated by an observer experiment. Experiment. In one condition, the traditional CAD condition, the most suspicious CAD locations were shown to the subjects, without telling them the levels of suspiciousness according to CAD. In the other condition, interactive CAD condition, levels of suspiciousness were given, but only when readers requested them at specified locations. These two conditions focus on decreasing search errors and decision errors, respectively. Results of reading without CAD were also recorded. Six subjects, all non-radiologists, read 223 chest radiographs in both conditions. CAD results were obtained from the OnGuard 5.0 system developed by Riverain Medical (Miamisburg, Ohio). Results. The observer data were analyzed by Location Response Operating Characteristic analysis (LROC). It was found that: 1) With the aid of CAD, the performance is significantly better than without CAD; 2) The performance with interactive CAD is significantly better than with traditional CAD at low fals