Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Radiation resistance of single and multilayer coatings against synchrotron radiation

: Guenster, S.; Blaschke, H.; Ristau, D.; Danailov, M.; Trovo, M.; Gatto, A.; Kaiser, N.; Sarto, F.; Flori, D.; Menchini, F.


Amra, C. ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
Advances in optical thin films : 30 September - 3 October 2003, St. Etienne, France
Bellingham/Wash.: SPIE, 2004 (SPIE Proceedings Series 5250)
ISBN: 0-8194-5134-7
Conference "Advances in Optical Thin Films" <2003, St. Etienne>
Conference Paper
Fraunhofer IOF ()

Optical coatings for the use in free electron laser systems have to withstand high power laser radiation and the intense energetic background radiation of the synchrotron radiation source. In general, the bombardment with high energetic photons leads to irreversible changes and a discoloration of the specimen. For the development of appropriate optical coatings, the degradation mechanisms of available optical materials have to be characterized. In this contribution the degradation mechanisms of single layer coatings (fluoride and oxide materials) and multilayer systems will be presented. Fluoride and oxide single layers were produced by thermal evaporation and high energetic ion beam sputter deposition. The same methods were employed for the deposition of multilayer systems. High reflecting coatings for the wavelength region around 180nm were chosen for the irradiation tests. All samples were characterized after production by spectrophotometry covering the VUV, VIS, and MIR spectral range. Mechanical coating stress was evaluated with interferometric methods. Synchrotron irradiation tests were performed at ELETTRA, using a standardized irradiation cycle for all tests. Ambient pressure and possible contamination in the vacuum environment were monitored by mass spectrometry. For comparison, the optical coatings were investigated again in the VUV, VIS, and MIR spectral range after irradiation. On selected samples XRD measurements were performed. The observed degradation mechanisms comprise severe damages like coating and substrate surface ablation. Color centre formation in the VIS spectral range and an increase of VUV absorption were found as a major origin for a severe degradation of VUV transmittance On the basis of the performed investigations, a selection of coating materials and coating systems is possible in respect to the damage effects caused by synchrotron radiation.