Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Comprehensive analytical model for locally contacted rear surface passivated solar cells

: Wolf, A.; Biro, D.; Nekarda, J.; Stumpp, S.; Kimmerle, A.; Mack, S.; Preu, R.


Journal of applied physics 108 (2010), No.12, Art. 124510, 13 pp.
ISSN: 0021-8979
ISSN: 1089-7550
Journal Article
Fraunhofer ISE ()
PV Produktionstechnologie und Qualitätssicherung; Silicium-Photovoltaik; Oberflächen: Konditionierung; Passivierung; Lichteinfang; Industrielle und neuartige Solarzellenstrukturen; Produktionsanlagen und Prozessentwicklung

For optimum performance of solar cells featuring a locally contacted rear surface, the metallization fraction as well as the size and distribution of the local contacts are crucial, since Ohmic and recombination losses have to be balanced. In this work we present a set of equations which enable to calculate this trade off without the need of numerical simulations. Our model combines established analytical and empirical equations to predict the energy conversion efficiency of a locally contacted device. For experimental verification, we fabricate devices from float zone silicon wafers of different resistivity using the laser fired contact technology for forming the local rear contacts. The detailed characterization of test structures enables the determination of important physical parameters, such as the surface recombination velocity at the contacted area and the spreading resistance of the contacts. Our analytical model reproduces the experimental results very well and correctly predicts the optimum contact spacing without the use of free fitting parameters. We use our model to estimate the optimum bulk resistivity for locally contacted devices fabricated from conventional Czochralski-grown silicon material. These calculations use literature values for the stable minority carrier lifetime to account for the bulk recombination caused by the formation of boron-oxygen complexes under carrier injection.