Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Large area fabrication of micro and nano periodic structures on polymers by direct laser interference patterning

Großflächige Herstellung von mikro- und nanoperiodischen Strukturen of Polymeren durch direkte Laser-Interferenz-Musterung
: Lasagni, A.

Dresdner Transferstelle für Vakuumtechnik, Dresden; Leibniz-Institut für Polymerforschung -IPF-, Dresden:
Beschichtung, Modifizierung und Charakterisierung von Polymeroberflächen. Tagungsband : NDVaK, 17. Neues Dresdner Vakuumtechnisches Kolloquium. 21. und 22. Oktober 2009, RAMADA Hotel, Dresden
Dresden: DTVA, 2009
ISBN: 978-3-9812550-1-0
Neues Dresdner Vakuumtechnisches Kolloquium (NDVaK) <17, 2009, Dresden>
Conference Paper
Fraunhofer IWS ()
Laserbestrahlung; Polyethylenterephthalat; Polyetheretherketon; Polyimid; Polymethylmethacrylat (PMMA); Interferenz; Strukturierung

Surface pattering engineering techniques are essential to fabricate advanced topographies that can be use to modulate macroscopic properties on different materials. Particularly, Direct Laser Interference Patterning (DLIP) enables fabrication of repetitive periodic arrays and microstructures by irradiation of the sample surface with coherent beams of light. Commercial polyethylene terephthalate) (PET), polyimide (PI, Kapton) and poly(etheretherketone) (PEEK, Victrex), and polymethylmethacrylate (PMMA, Plexiglas), Poly(methylmethacrylate-co-styrene) (P(S-MMA), Mw = 100000 - 150000, 40 % styrene) were treated by a high-power pulsed Nd:YAG laser with a wavelength of 266 nm or 355 nm, frequency of 10 Hz and a pulse duration of 10 ns. Furthermore, only one process step is required in comparison with other top-down or bottom-up techniques. In this study, we explore the possibilities of this technique to fabricate advanced architectures on polymers including dielectric polymers, copolymers as well as conducting polymers. We have demonstrated that direct laser interference patterning (DLIP) permits the design of advanced architectures in different polymeric substrates and films in a single-step process. It was also shown that the previously calculated interference patterns can be directly reproduced on polymeric surface. Moreover, the topography of the structured polymers changes depending on the intensity of the laser beams. In PMMA-PS copolymers completely different micropatterns could be fabricated at low laser intensities due to swelling of the irradiated polymer at interference maxima positions. In addition, we were able to fabricate conducting polymers strips up to 600 nm with unchanged electrical conductivity.